
CPM Compartmentalization File Format
Proposal

Version 1.1

Author: Nick Roessler (nroessler@draper.com)
Contributors: André Dehon, Linus Wong, Jialiang Zhang,

Jing Li, Greg Sullivan, Eli Boling, Silviu Chiricescu



Contents

1 Introduction 2

2 Overview and Definitions 2

3 Motivating Example 4
3.1 Example With No Context . . . . . . . . . . . . . . . . . . . . 5
3.2 Example With Execution Context . . . . . . . . . . . . . . . . 6
3.3 Example With Object Context . . . . . . . . . . . . . . . . . . 7

4 File Format 8
4.1 Top-Level Structure . . . . . . . . . . . . . . . . . . . . . . . . 9
4.2 Object Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.3 Subject Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.4 Privileges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

5 Subject and Object Identification 12
5.1 Subject Identifiers . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.2 Object Identifiers . . . . . . . . . . . . . . . . . . . . . . . . . 13

5.2.1 Static Objects . . . . . . . . . . . . . . . . . . . . . . . 13
5.2.2 Dynamic Objects . . . . . . . . . . . . . . . . . . . . . 13

6 Context 13
6.1 Universal Context Specifiers . . . . . . . . . . . . . . . . . . . 14

6.1.1 Call Context . . . . . . . . . . . . . . . . . . . . . . . . 14
6.2 Linux Kernel Context Specifiers . . . . . . . . . . . . . . . . . 14

6.2.1 uid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
6.2.2 gid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

7 Format Subsetting 15

8 Privilege Counts For Trace Encoding 15
8.1 Format Extension . . . . . . . . . . . . . . . . . . . . . . . . . 16
8.2 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

9 Planned Extensions 17

1



1 Introduction

This document defines the file format for a compartmentalization specifica-
tion that accompanies an ELF program. The format precisely describes (1)
how elements of that program are decomposed into compartments, and (2)
which operations are allowed or disallowed between those compartments. It
is intended to serve both as a target format for policy generation, enabling
the flexible expression of policies, as well as the input format for policy en-
forcement mechanisms. This format is intended to provide a standardized
format for communication between teams and tools on the DARPA Compart-
mentalization and Privilege Management (CPM) program. For flexibility, it
is expressed in terms of ELF symbols and source code lines instead of raw ad-
dresses. As such, it assumes that debug information of the protected program
is available.

A system enforcing the compartmentalization should need only the ELF
program with symbols and the CPM compartmentalization specification; it
may realize the enforcement “in-place” on the input ELF program or may
produce a new ELF binary that realizes the compartmentalization.

The format is a subset of YAML, a human-readable markup language.
This document defines an early version of the format that is subject to
change.

2 Overview and Definitions

The CPM compartmentalization file format encodes fine-grained privilege
separation defenses that can be applied to a monolithic program. For exam-
ple, a collection of functions that handle untrusted network packets can be
grouped together; they can be permitted to access the network buffer where
packets arrive from, but restricted from accessing other data or calling other
code. The file format is concerned only with policy (how the system is de-
composed into compartments) and makes no claims about mechanism (how
the enforcement of said policy is implemented).

For pragmatism on real programs, the compartmentalization model de-
scribes permissions in terms of easily identifiable system elements (such as
functions and objects that appear in the program’s symbol table) and low-
level operations such as read, write, and call accessibility. At a high level, it
can be thought of as defining an access control matrix over all the elements
of the program to explicitly state what operations are allowed between the
various code and data elements.

It is designed to require minimal (or no) code refactoring and to be able

2



to be applied “in-place” to an existing system by restricting privileges in that
system. We use the following definitions:

1. Subject Domain: A collection of functions that are grouped together
and treated as one. Any calls or control-flow operations between the
contained functions are implicitly permitted, but calls to other Subject
Domains must be explicitly granted.

2. Object Domain: A collection of primitive data objects (e.g., global
variables) that are grouped together and treated as one. Access to an
Object Domain is granted or revoked in its entirety.

3. Operation: One of four operation types that can be granted or re-
voked: read, write, call, and return. The read and write permis-
sions govern memory accessibility and the call and return operations
govern function call and return capability.

4. Execution Context: Any aspect of the program’s runtime state that
is to be used to differentiate that state from other states in determining
allowed permissions. Examples of execution context include the current
call stack, the entry point of the kernel, or whether the current user is
root.

5. Principal: The combination of a Subject Domain and an Execution
Context. A Principal is the granularity at which operation privileges
are granted or revoked.

6. Object Context: The Execution Context under which a dynamically
allocated object was allocated. Principals may condition their read

and write permissions based on the Object Context of the accessed
object. Static objects such as global variables have an empty Object
Context.

7. Object: The combination of an Object Domain and an Object Con-
text.

8. Compartment: A Principal and all of the Objects it can access.

The read and write privileges are defined between a Principal and an
Object. The call and return privileges are defined between a Principal
and a Subject Domain. When no context is used, the model defines simple
relationships between the program’s code and objects.

3



3 Motivating Example

Consider the following code in which a user and admin password are defined
and a user-supplied string is checked against both passwords:

1 #inc lude <s t d i o . h>
2 #inc lude <s tdboo l . h>
3 #inc lude <s t r i n g . h>
4

5 char user password [ ] = ” user123 ” ;
6 char admin password [ ] = ”admin100” ;
7

8 bool user check password ( char * password )
9 {

10 re turn strcmp ( password , user password ) == 0 ;
11 }
12

13 bool admin check password ( char * password )
14 {
15 re turn strcmp ( password , admin password ) == 0 ;
16 }
17

18 i n t main ( i n t argc , char * argv [ ] )
19 {
20 char * password = argv [ 1 ] ;
21 i f ( user check password ( password ) )
22 {
23 // logged in as user
24 } e l s e i f ( admin check password ( password ) )
25 {
26 // logged in as admin
27 }
28 }

The following privileges are exercised by the program:

1. main can call both user check password and admin check password

2. Both user check password and admin check password can return to
main

3. Both user check password and admin check password can call strcmp

4. strcmp can read the variables user password and admin password

5. strcmp can return to both user check password and admin check password

We describe the file format formally in Section 4, but include examples of
the format for illustrative purposes here. We can express a compartmental-
ization for this program by first grouping together the functions and objects

4



in the program into domains. At the simplest, we can place each function
and object into its own domain like so:

# Create an Object Domain for each variable

object_map:

- name: UserPassword

objects: [main.c | user_password]
- name: AdminPassword

objects: [main.c | admin_password]

# Create Subject Domain for each function

subject_map:

- name: CheckUserPasword

subjects: [main.c | user_check_password]
- name: CheckAdminPassword

subjects: [main.c | admin_check_password]
- name: StringCompare

subjects: [string.h | strcmp]
- name: Main

subjects: [main.c | main]

After defining our domains, we can define the privileges we want to allow
between those domains.

3.1 Example With No Context

In the simplest case where no execution context is used, we will define 4
Principals and their allowed privileges, one for each function in the program.
Without the inclusion of context, our compartmentalization will effectively
define simple relationships between the program’s code and objects.

# Limit privileges to the intended set

privileges:

- principal:

subject: CheckUserPassword

execution_context:

can_call: [strcmp]

can_return: [main]

can_read: []

can_write: []

- principal:

subject: CheckAdminPassword

5



execution_context:

can_call: [strcmp]

can_return: [main]

can_read: []

can_write: []

- principal:

subject: Main

execution_context:

can_call: [CheckUserPassword , CheckAdminPassword]

can_return: []

can_read: []

can_write: []

- principal:

subject: StringCompare

execution_context:

can_call: []

can_return: [CheckUserPassword , CheckAdminPassword]

can_read:

- objects: [UserPassword , AdminPassword]

object_context:

can_write: []

This set of privileges make explicit the set of call, return, read and write
permissions listed at the beginning of this section and would configure the
compartmentalization defense to enforce them.

Note that functions like strcmp can become overprivileged when they are
used in different ways by the program. We can use context to limit these
privileges further.

3.2 Example With Execution Context

If we wanted to strengthen the separation by limiting the privileges available
to strcmp based on the current call stack, we can do that by redefining our
principals to include additional context. We take the example from the last
section, but split the StringCompare principal into two principals, one for
each call chain under which strcmp can be called.

# Use context to limit StringCompare ’s privileges

privileges:

- principal:

subject: StringCompare

execution_context:

6



call_context: [main , CheckUserPassword]

can_call: []

can_return: [CheckUserPassword]

can_read:

- objects: [UserPassword]

object_context:

can_write: []

- principal:

subject: StringCompare

execution_context:

call_context: [main , CheckAdminPassword]

can_call: []

can_return: [CheckAdminPassword]

can_read:

- objects: [AdminPassword]

object_context:

can_write: []

This separation is more restrictive than the first: now strcmp can only
access the password data and return to a single caller depending on the con-
text in which it was called. However, it may also cost more overhead to
enforce: the enforcement mechanism must now track the call stack and con-
dition permissions based on its status. The compartmentalization format is
able to express many possible privilege decompositions for the same program.

3.3 Example With Object Context

Another feature included in the format is conditioning privileges based on
the Object Context of a dynamic object. This allows objects allocated from
the same code point (allocator call) to be treated differently based on how
they were allocated and what Principal is trying to access them.

We present a new example program to illustrate these concepts. It rep-
resents a system with multiple users, each of which has a unique user id, the
uid. We assume that when any of the functions are called, the uid of the
invoking user is known by the runtime environment and can be inspected by
the enforcement system.

The function create key creates a new key. The function encrypt message

takes a key and message as an input, and encrypts the message in-place.
For brevity, we omit other parts of the system such as how these functions

would be called and the message objects, focusing only on the keys.

7



1 byte * c r ea t e k ey ( )
2 {
3 byte * key = mal loc (KEY LEN) ;
4 i n i t k e y ( key , KEY LEN) ;
5 re turn key ;
6 }
7

8 void encrypt message ( byte * key , char * message )
9 {

10 // encrypt message with key
11 }

We show the Principal for EncryptMessage, the Subject Domain contain-
ing encrypt message:

# Illustrate uses of object_context

privileges:

- principal:

subject: EncryptMessage

execution_context:

uid: U

can_call: []

can_return: []

can_read: []

can_write:

- objects: [Key]

object_context:

uid: U

Here, the execution context of the Principal expresses a symbolic value
U, representing whatever uid is active in the context when the EncryptMes-
sage Subject Domain is executing. The write access permission to the Key
object is conditioned on the Object Context having the same uid U when it
was allocated (e.g., they are both 317). This technique can be used to limit
each user’s access to just their own data, preventing any bugs where keys
could leak from one user to another.

In the following sections, we elaborate on these features and sections in
more detail.

4 File Format

A CPM compartmentalization file has 3 major sections: Object Domains,
Subject Domains, and Privileges. The Object Domains section defines how

8



the program’s objects are grouped into Object Domains. The Subject Do-
mains section defines how portions of the program’s code are grouped into
Subject Domains. Lastly, the Privileges section defines Principals and which
operations they are granted.

The Subject and Object Domain sections refer to subjects and objects
in a program by their unique string identifiers (object IDs and subject IDs).
This mapping and naming scheme is described in Section 5.

The Privileges section uses context identifier strings, which represent an
aspect of the system’s context. This mapping and naming scheme is described
in Section 6.

4.1 Top-Level Structure

A CPM compartmentalization file must have a top-level element of the
dictionary type that contains at least these three key-value pairs:

� object map : a list of Domain Descriptor objects

� subject map : a list of Subject Descriptor objects

� privileges : a list of Privilege Descriptor objects

4.2 Object Map

The value stored at the top-level key object map is a list of Domain Descrip-
tors, each of which is of type dictionary.

Each such Domain Descriptor dictionary defines a new Object Domain
and must have the following key-value pairs:

� name : the name for the object domain, which will be used to refer to
this domain

� objects : a list of object ID strings

The following example shows an Object Map defining two Object Do-
mains that together contain four objects.

object_map:

- name: ObjectDomain1

objects: [objectID1]

- name: ObjectDomain2

objects: [objectID2 , objectID3 , objectID4]

9



Where each object ID is a unique string that corresponds to an object as
identified in Section 5.

Each object in a program must have its object ID included in exactly one
Object Domain and the defined Object Domain names must all be unique.
Object Domain names may contain alphanumeric characters plus the “ ” and
“.” characters and should not include any white space.

4.3 Subject Map

The value stored at the top-level key subject map is a list of Subject De-
scriptors, each of which is of type dictionary.

Each such Subject Descriptor dictionary defines a new Subject Domain
and must have the following key-value pairs:

� name : the name for the subject domain, which will be used to refer to
this domain

� subjects : a list of subject ID strings

The following example shows an Subject Map defining two Subject Do-
mains that together contain four subjects.

subject_map:

- name: SubjectDomain1

subjects: [subjectID1 , subjectID2]

- name: SubjectDomain2

subjects: [subjectID3 , subjectID4]

Where each subject ID is a unique string that corresponds to a subject
as identified in Section 5.

Each subject in a program must have its subject ID included in exactly
one Subject Domain. The defined Subject Domain names must all be unique
and must not collide with any Object Domain names. Subject Domain names
may contain alphanumeric characters plus the “ ” and “.” characters and
should not include any white space.

4.4 Privileges

The value stored at the top-level key privileges is a list of Privilege De-
scriptors, each of which is of type dictionary.

Each Privilege Descriptor defines the privileges a principal in the system
has. Each such Privilege Descriptor object must have the following key-value
pairs:

10



� principal : a Principal Descriptor object

� can call : a list of Subject Domain names that can be called by this
principal

� can return : a list of Subject Domain names that this principal can
return to

� can read : a list of Access Descriptor objects

� can write : a list of Access Descriptor objects

Where a Principle Descriptor object is of type dictionary and has the
following key-value pairs:

� subject : the name of a Subject Domain

� execution context : a Context Descriptor object

Where a Context Descriptor object is of type dictionary and may con-
tain zero or more context key-value pairs. The context identifier strings,
mapping and interpretation are described in Section 6.

An Access Descriptor object is of type dictionary and has the following
key-value pairs:

� objects : a list of Object Domain names

� object context : a Context Descriptor object

The following example shows a Privilege section that contains an entry
for just one principal:

privileges:

- principal:

subject: SubjectDomain1

execution_context:

call_context: [subjID1 , *]

uid: U

can_call: [SubjectDomain2]

can_return: [SubjectDomain3]

can_read:

- objects: [ObjectDomain1 , ObjectDomain2]

object_context:

uid: U

- objects: [ObjectDomain4]

11



object_context:

can_write:

- objects: [ObjectDomain3]

object_context:

Any privileges not specifically granted in a Privilege Descriptor are as-
sumed to be absent, i.e., a default-deny policy is assumed.

The privilege lists in a Privilege Descriptor (e.g., can call) may be
empty, which indicates no allowed privileges of that operation type.

Only a single Privilege Descriptor can be present for each principal (com-
bination of Subject Domain and Execution Context).

5 Subject and Object Identification

The subject and object identifier strings presented in Section 4 are used to
uniquely map to a corresponding element of the program. Each such string
should uniquely identify an element of the program, and each piece of code
and data in the program should have exactly one unique identifier string that
identifies it.

We present our naming and mapping scheme here.

5.1 Subject Identifiers

The following identification scheme is used for subjects (code):

� Functions with symbols and sizes: For functions that have a both a
symbol name and a known size, the identifier for the function is taken
to be the concatenation of: (1) the name of the containing compila-
tion unit, (2) a pipe character, and (3) the name of the symbol, e.g.,
“main.c|main”.

� Functions without a symbol and size: Any function that does
not have both a symbol name and known size will be identified by the
concatenation of: (1) the name of the containing compilation unit, (2) a
pipe character, and (3) the name of the originating file. This can occurs
when e.g., assembly source code has functions that are not annotated
with a size. All functions that originate from the same source file and
do not have a size share the same identifier and are considered the same
subject. Note that some functions in a file may have sizes and some
may not; in this case the functions with sizes will be identified by the
above clause and all remainders will be identified by this one and will
be considered the same subject.

12



� Dyanmically generated code: TBD

5.2 Object Identifiers

The following identification scheme is used for objects (data). There are
two broad classes of objects: static objects and dynamic objects. Dynamic
objects are unique in that they are allocated from an allocating context and
have an Object Context.

5.2.1 Static Objects

� Global Variables: Each global variable is identified by the concate-
nation of: (1) the name of the containing compilation unit, (2) a pipe
character, and (3) the name of the symbol, e.g., “main.c|password”.

� Memory Regions: TBD

5.2.2 Dynamic Objects

� Dynamically Allocated Objects: All dynamic objects that orig-
inate from the same allocation point (call instruction to an alloca-
tor routine) are considered the same object. The object is identi-
fied by the concatenation of (1) the name of the containing compi-
lation unit, (2) a pipe character, (3) the absolute path to the con-
taining source file, (4) a pipe character, and (5) the line of source
code that generated the allocator call. An example object identifier is
“main.c|/home/user/main.c|16”.

� Stacks: We plan to support three granularities of stack object identi-
fication in increasing precision: (1) entire stacks as individual objects,
(2) stack frames created by each function as individual objects, and (3)
sub-frame level identification where local variables are counted as indi-
vidual objects. This specification is TBD in a future updated format.

6 Context

In this section we define the set of context key-value pairs used by Context
Descriptor objects (Section 4). For each context key, we define the allowed
values when specified under both the Execution Context and Object Context.
We define two broad classes of context specifiers: those that are universal
and may apply to any program (Section 6.1) and those that are specific to

13



the Linux kernel (Section 6.2). The CPM compartmentalization format may
be extended to other application domains or systems by defining new context
specifiers suitable for that system.

Any context keys not explicitly set in a Context Descriptor are assumed
to be wildcard e.g., apply to all execution contexts.

6.1 Universal Context Specifiers

6.1.1 Call Context

The call context context key refers to the current call stack. It has a
value of the list type, where each element is either the identifier string of a
function in the program or the special wildcard “*” value. The first item is
interpreted as the base of the stack (first stack frame), with each subsequent
list item indicating a nested call higher in the stack. The special wildcard
value matches any number (or zero) stack frames. This key-value pair is
allowed in both the Execution Context and the Object Context.

For example:

� [main.c|main, main.c|check user password]matches one call stack:
main as the first called function at the bottom of the stack with one
callee check user password.

� [main.c|main, *] matches all call stacks where main is the first called
function (including just main).

� [*, string.h|strcmp] matches all call stacks where strcmp is at the
top of the stack (currently executing function) no matter what calls
took place prior.

6.2 Linux Kernel Context Specifiers

6.2.1 uid

The uid context key refers to the effective uid (user id) indicated in the
task struct of the currently executing task. It is a scalar string type and
may be set to one of these values:

� “root” : the task belongs to the root user (uid of 0). Allowed in
Execution Context and Object Contexts.

� “user” : the task belongs to any user except the root user (uid ̸= 0).
Allowed in Execution Context and Object Contexts.

14



� “*” : matches any uid (same as not specifying). Allowed in Execution
Context and Object Contexts.

� “<var name>”: In an Execution Context, matches any uid value and
binds the variable name to that value. In an Object Context, refers to
the uid bound in the Execution Context.

6.2.2 gid

The gid context specifier refers to the effective gid (group id) indicated in
the task struct of the currently executing task. It is a scalar string type
and may be set to one of these values:

� “*” : matches any gid (same as not specifying). Allowed in Execution
Context and Object Contexts.

� “<var name>”: In an Execution Context, matches any gid value and
binds the variable name to that value. In an Object Context, refers to
the gid bound in the Execution Context.

Note that the gid is defined differently from the uid because there is no
safe assumption that the group with gid 0 is known to be a special root value.
As such, the only allowed context operation for the gid is checking that the
object was allocated by the same group that is performing an access.

7 Format Subsetting

The CPM format is an interchange format between policy generation and
policy enforcement tools. Neither policy generation tools nor enforcement
platforms need support all features defined in the CPM format. We intend to
add standardized subsetting specifications to enable enforcement platforms to
enumerate what subset of the CPM format they intend to support, i.e., which
context specifiers or stack object identification method they can enforce.
These specifications can be provided to policy generation tools to assure
that only features that are actually enforceable by the target platform are
used.

8 Privilege Counts For Trace Encoding

With only minor adjustments to the format, the number of dynamic uses
of each privilege can be encoded using the same formulation of Objects,

15



Subjects, Principals and Contexts. This enables the format to additionally
encode dynamic privilege traces of a running system, aligning with the goal of
having a privilege and compartmentalization formulation that can be learned
or extracted from a running system.

8.1 Format Extension

For this extension, additional count fields are augmented to the Privileges
section of the format to annotate privileges with their runtime usages. This
makes the trace format a superset of the base format while maintaining the
property that the trace format also parses as a valid interchange format.

Two additional fields are added to the Privilege Descriptor object:

1. call counts : a list of equal length to the can call list. Each element
of the list represents the number of times the corresponding Subject
Domain at the same index was called.

2. return counts : a list of equal length to the can return list. Each
element of the list represents the number of times the corresponding
Subject Domain at the same index was returned to.

An additional field is added to the Access Descriptor object, which is
found in both the can read and can write lists.

1. counts : a list of equal length to the objects list in the containing
Access Descriptor. Each element of the list represents the number of
times the corresponding Object Domain was accessed.

Note that a typical trace file would define a Subject Domain for each func-
tion and an Object Domain for each primitive object (“reflexive domains”)
to record the privilege uses at the finest granularity, which may then be
post-processed by analysis tools.

When a CPM compartmentalization file no count extensions (no addi-
tional count fields) is interpreted as a trace, an implicit count of 1 for each
privilege listed is assumed. This assumption enables privileges derived from
static analysis with no runtime counts to be combined with dynamic traces.

8.2 Example

Below is a complete example of a Privilege Descriptor augmented with the
runtime counts. It assumes that there are some Subject Domains and Object
Domains already defined.

16



- principal:

subject: SubjectDomain1

execution_context:

uid: user

can_call:

- SubjectDomain2

- SubjectDomain3

call_counts:

- 594

- 433

can_return:

- SubjectDomain2

return_counts:

- 990

can_read:

- objects:

- ObjectDomain1

- ObjectDomain3

counts:

- 348

- 141

can_write:

- objects: []

counts: []

9 Planned Extensions

This is an early version of the CPM compartmentalization file format. We
plan to add additional context specifiers, such as:

1. namespace

2. cgroup

3. process lineage

We plan to add additional subject and object identifiers to address all
data used by the Linux kernel, including:

1. memblock memory

17



2. per-cpu variables

3. memory mapped IO

4. dynamically loaded modules

18


	Introduction
	Overview and Definitions
	Motivating Example
	Example With No Context
	Example With Execution Context
	Example With Object Context

	File Format
	Top-Level Structure
	Object Map
	Subject Map
	Privileges

	Subject and Object Identification
	Subject Identifiers
	Object Identifiers
	Static Objects
	Dynamic Objects


	Context
	Universal Context Specifiers
	Call Context

	Linux Kernel Context Specifiers
	uid
	gid


	Format Subsetting
	Privilege Counts For Trace Encoding
	Format Extension
	Example

	Planned Extensions

